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An extended analytic approach is considered for optical Bloch equations in the two
level atom interacting with laser light. The separation approach of coupled differential
equations is always possible with a sequence of special transformation into the Riccati
nonlinear differential equation. The conditions that permit an exact solutions of three
coupled system are extracted in a natural manner. The case of sodium atom moving
along the axis of a monochromatic wave is treated in some details including a discussion
on the radiation pressure forces exerted by laser light in the transient regime.
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1. INTRODUCTION

It is well known that the study of the mechanical effects of light on two- and
three- level atoms has several important goals: it leads to a simple categorization
of the forces acting on the atomic center of mass, and in addition permits a simple
discussion of cooling and trapping.

In order to investigate concretely the limits of the recent expanding research
field, called laser cooling and trapping, several theoretical treatments have been
proposed. The review of some of these approaches and the comparison of their
advantages, difficulties and domains of validity, can be found in the literatures
(Cohen-Tannoudji, 1992; Gordon and Ashkin, 1980; Meystre and Sargent, 1999).

In general the physical mechanisms of the atomic motion in light are gov-
erned by the optical Bloch equations and they are solved in the steady-state, to
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illustrate the mean radiative forces for a two- and three-level atom. In this case
the range of the validity of these solutions is assumed to be in the same order of
the characteristic time required by the internal state of the atom to reach its steady
state.

On the other hand, to show the transient optical effects on atomic motion, we
have to solve the OBE which form a set of coupled linear first-order differential
equations. This coupled system does not, in general, permit exact analytic
solutions and one must employ some approximations to reduce this system to
a tractable form. Indeed, the problem of the two-level system leads to a three
coupled differential equations with constant coefficients which can in principle
be solved exactly. However, the characteristic equation of this system is a cubic
one and its exact analytic roots do not lend themselves to analytic treatment, and
some approximations or graphical representations must be employed to reduce
the roots into a more manageable form in order to obtain analytic solutions (Carter
et al., 2005). On the other hand, the Bloch equations with variable coefficients
can not analytically be solved (Cohen-Tannoudji, 1992). It may, however, be
worthwhile if the physical models can be constructed in such a manner that the
coupled system can either be analytically solved or transformed into another
system in which the equations are decoupled and solvable separately.

In this work, the emphasis is laid to determine the conditions that permit
exact analytic solutions for the optical Bloch equations with a two-level atom,
using the nonlinear Riccati equation. We shall present a new treatment of solution
with reference to a three coupled Bloch equations which is important in many
applications and exhibited interesting features including transient optical angular
momentum effects (Carter et al., 2005), transient response of cold atomic beam
(Livesey et al., 2003), atomic cooling schemes such as sub-Doppler cooling (Xu
et al., 2003), laser cooling of atom, ions or molecules (Vuletic and Chu, 2000;
Robins et al., 2001) and ultra-cold atomic samples, as can be now obtained by
several cooling methods (Wineland and Itano, 1987). Within this scope, this paper
begins in Section 2 with setting up the mathematical structure of the two-level atom
with stable ground state and derives the optical Bloch equations (OBE). Section
3 deals with the suggested approach where the OBE are converted to a system of
coupled nonlinear Riccati equations. We derive the conditions that permit the total
separation of these equations and the closed analytic solutions are obtained for the
Bloch vector. In Section 4, an example is considered to illustrate the usefulness
of this treatment. The atomic motion in a plane running wave will be pointed
out. The essential features of the forces will be reported for the Na atom, and in
Section 5 we conclude with some remarks and discussion, and possible extension
of the area of investigations.
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2. TWO-LEVEL ATOM WITH STABLE GROUNDSTATE

This section is devoted to further analysis of two-level atoms. The Hamilto-
nian of the global system can be written (Cohen-Tannoudji, 1992; Meystre and
Sargent, 1999) as

H = HA + HV + HAL + HAV (1)

where HA is the atomic Hamiltonian, which is the sum of the center-of-mass
kinetic energy of the atom and the internal transition energy. The second term is
the energy of the quantum radiation field initially in the vacuum state. The third
term is the coupling of the atomic dipole d and the laser electric field El(R, t).
Finally, the last term describes the atom-vacuum coupling.

In the semiclassical approximation and with the rotating wave approximation,
for the pure radiative decay which is defined by an upper-to-lower-level transition
with the dipole constant γ = 1

2� as in (Fig. 1), the time evolution of the density
operator is given by

ρ̇ = − i

h
[H, ρ] − �

2
[σ+σ−ρ + ρσ+σ−] + �σ−ρσ+ (2)

where σ± are the Pauli spin-flip operators. By choosing the energy zero to be half
between the upper and lower levels and projecting onto the bare state | a〉, | b〉

Fig. 1. A two-level atom with a stable ground state and upper level decay rate �.
The atom of energy hω0 is assumed to interact with laser light of frequency ω.
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basis, the density matrix equations can be obtained. By introducing the Bloch
vector (U,V,W ), it is easy to show (Cohen-Tannoudji, 1992; Meystre and Sargent,
1999) that the components of the Bloch vector for upper to lower decay satisfy
the following motion equations

⎛
⎜⎝

U̇

V̇

Ẇ

⎞
⎟⎠ =

⎛
⎜⎝

−�/2 (δ + φ̇(r)) 0

−(δ + φ̇(r)) −�/2 −R0(r)

0 R0(r) −�

⎞
⎟⎠

⎛
⎜⎝

U

V

W

⎞
⎟⎠ +

⎛
⎜⎝

0

0

−�

⎞
⎟⎠ (3)

where the frequency shift δ = ω − ω0 is the detuning, φ is the phase of the electric
field E(r, t), where we lump all rapid spatial dependence of the field into the phase
φ(r) and the Rabi frequencyR0(r) is now a function of position in general. In terms
of the components of the Bloch vector the mean radiative force for a two-level
atom is simply given by

F(r, t) = −1

2
hR0(r)[U (r, t)α(r, t) + V (r, t)β(r, t)] (4)

where we have introduced

α = ∇R0(r)

R0(r)
(5)

and

β = ∇φ(r) (6)

On the other hand, the first component of the Bloch vector, U, is proportional to
the real part of ρab and is responsible for dispersive effects (index of refraction.)
In contrast, V is proportional to the imaginary part of ρab and hence is responsible
for amplification and absorption of light. This distinction permits us to separate
the F(r, t) into a dissipative and dispersive contribution,

F(r, t) = Fdissip(r, t) + Freact(r, t) (7)

where we have introduced the dissipative, or radiative pressure force

Fdissip = −1

2
hR0Vβ (8)

and the reactive, or dipole force

Freact = −1

2
hR0Uα (9)

From the definitions of α and β we note that the dissipation force is non-vanishing
only if the laser field exhibits a phase gradient, β �= 0. In contrast, the reactive
force requires the presence of a field gradient, α �= 0. The steady-state solution to
the equations (3) can be obtained by putting

U̇ = V̇ = Ẇ = φ̇ = 0 (10)
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and solving the linear system,
⎛
⎜⎝

−�/2 δ 0

−δ −�/2 −R0

0 R0 −�

⎞
⎟⎠

⎛
⎜⎝

Ust

Vst

Wst

⎞
⎟⎠ =

⎛
⎜⎝

0

0

−�

⎞
⎟⎠ (11)

In general, from these solutions the reactive force can be deduced (Cohen-
Tannoudji, 1992; Meystre and Sargent, 1999)

Freact = −hδ

4

( ∇R2
0

δ2 + (�/2)2 + R2
0/2

)
(12)

which shows that the reactive force is proportional to the sign of the detuning
between the atomic transition frequency and the light frequency δ = ω − ω0.

Note finally that the Freact derives from an optical potential Uopt that can be given
by

Uopt = hδ

2
ln

(
1 + R2

0/2

δ2 + (�/2)2

)
(13)

since one can write

Freact = −∇Uopt (14)

For δ < 0, which is called red detuning in that the atom becomes strong-field
seeking, that is, Freact forces the atom towards regions of higher laser intensity.
For blue detuning δ > 0, in contrast, the force is repulsive and forces the atoms
towards regions of weak laser intensity. Note also that Freact does not saturate for
increasing Rabi frequencies.

In the following section, we will try to present a new treatment of the coupled
differential Eq. (3) to investigate the transient effects of the dissipative and dipole
forces.

3. SEPARATION OF THE OPTICAL BLOCH EQUATIONS

The system (3) can be written in the matrix form as

Ḃ = MB + C (15)

where B is the Bloch vector, M is a non-diagonal 3 × 3 matrix and C is inhomo-
geneous vector. The general solution of the system (15) is given by

B = Bh + Bp (16)

where Bh is the homogenous solution of the system without the term C and Bp

is the particular solution. By choosing Ḃ = 0 in the system (15), the particular
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solution can be obtained Bp = −M−1C which is the steady-state solution,

Bp =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ust

Vst

Wst

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

2δ
R0(r)

s
1+s

�
R0(r)

s
1+s

− 1
1+s

⎞
⎟⎟⎟⎟⎟⎟⎠

(17)

where s is a saturation parameter

s = 1

2

R0(r)

(�/2)2 + δ2
(18)

Consider now the homogeneous system

Ḃh = MBh (19)

and for simplification we shall introduce the following notations a = −�/2, b =
δ + φ̇, and c = −R0. Then the matrix M can be written as

M =

⎛
⎜⎝

a b 0

−b a c

0 −c 2a

⎞
⎟⎠ (20)

In general the separation operation is a transformation T such that the original
basis B is transformed into a new one, X = T B, which gives in principle another
system of differential equations that can be separated. The separation operation
is, however, not always possible unless some constraints on the elements of M are
imposed, and the purpose of the method proposed here is to find such constraints
and thence the solutions of the homogeneous system. This treatment amounts to
transforming the homogeneous system into a set of nonlinear Riccati equations
(Bougouffa and Kamli, 2004) that can be delighted without difficulty. We shall
take trial solutions of the form

Uh = X1(t)Vh (21)

Wh = X2(t)Vh (22)

where X’s are any continuous functions of time to be determined. However, for
notational convenience we will drop the index h and restore it at the end of
calculations. Substituting from (21) and (22) in Eq. (19) we get the following
three equations for the component V :

V̇ =
(

a + b

X1
− Ẋ1

X1

)
V (23)

V̇ = (a + cX2 − bX1) V (24)
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V̇ =
(

2a − c

X2
− Ẋ2

X2

)
V (25)

These three equations must be identical since they govern the same component
V . The compatibility of these equations leads to coupled nonlinear differential
equations for the functions X1 and X2. By identifying (23) with (24) and (25) with
(24) we get for X1 and X2 the equations

−Ẋ1 + bX2
1 = cX1X2 − b (26)

Ẋ2 − aX2 + cX2
2 = bX1X2 − c (27)

Equations (26) and (27) are of the Riccati equations form except for the coupled
term involving the product of the two functions; X1X2. It is clear that this system
as it stands is not separable. To separate these equations we shall seek solutions
of the form

X1X2 = ϕ(t) (28)

where ϕ(t) is a function to be determined. With this assumption a general trans-
formation for canceling ϕ(t) is not yet known (Bougouffa and Kamli, 2004).
Consequently, the simplest nontrivial situation which allows the separation of
Eqs. (26) and (27)is that the function ϕ(t) equals a constant α, i.e. X1X2 = α.
With this assumption Eqs. (26) and (27) become

−Ẋ1 + bX2
1 = cα − b (29)

Ẋ2 − aX2 + cX2
2 = bα − c (30)

The Riccati equations (28) and (29) can now be solved using the substitutions

X1 = −1

b

Ż1

Z1
(31)

X2 = 1

c

Ż2

Z2
(32)

The functions Z1 and Z2 satisfy the following second-order equations:

Z̈1 + b(b − cα)Z1 = 0 (33)

Z̈2 − aŻ2 + c(c − bα)Z2 = 0 (34)

These two equations are readily solved and give

Z1 = A+e+i
√

b(b−cα)t + A−e−i
√

b(b−cα)t (35)

Z2 = e
a
2 t (B+e+iµt + B−e−iµt ) (36)
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where A+, A−, B+, B− are the constants and

µ =
√

4c(c − bα) − a2 (37)

Now using Eqs. (24, 30–35) we can solve for the components of the Bloch vector
as

V = V0Z1Z2e
at (38)

with V (t = 0) = V0. From Eqs. (21, 22) we obtain

U = −V0

b
Ż1Z2e

at (39)

W = V0

c
Ż2Z1e

at (40)

The value of the constant α is determined as follows, since Eqs. (23) and (25) are
identical, the terms inside the square brackets must be equal. Equating these two
brackets and using (28) we obtain the following equation for X1:

−Ẋ1 + c

2α
X2

1 = a

2
X1 − b

2
(41)

Comparing Eqs. (29) and (41) we obtain the first condition by identification:

a = 0 (42)

which corresponds to the case with no decay. In this case the solutions of the
coupled system can be used in the discussions of optical nutations, free induction
decay, photon echo, and Ramsey fringes (Meystre and Sargent, 1999).

On the other hand, it can be seen that if X1 is a solution of the Eq. (29), then
βX1 satisfies the following equation

−Ẋ1 + bβX2
1 = (cα − b)/β (43)

where β is a constant. By identification term to term between this equation and
(41) we obtain the following conditions,

bβ = c

2α
(44)

cα − b

β
= −b

2
(45)

Solving these equations for α, we obtain

α1,2 = 1

2

⎡
⎣b

c
±

√(
b

c

)2

− 1

⎤
⎦ (46)
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It remains to determine the constants of integration A+, A−, B+ and B− we need
four equations. These are provided from the initial conditions of the problem

U (t = 0) = U0 (47)

V (t = 0 = V0 (48)

W (t = 0) = W0 (49)

and the condition X1X2 = α. After some simple algebra, we obtain the exact
expressions of the Bloch component vector.

U (t) = (c2 + b2 cos(�t))

�2
U0 + b

�
sin(�t)V0 + bc(1 − cos(�t))

�2
W0 (50)

V (t) = − b

�
sin(�t)U0 + cos(�t)V0 + c

�
sin(�t)W0 (51)

W (t) = bc(1 − cos(�t))

�2
U0 − c

�
sin(�t)V0 + (b2 + c2 cos(�t))

�2
W0 (52)

where � is the generalized Rabi flopping frequency

� =
√

b2 + c2 =
√

δ2 + R2
0 (53)

Another constructive solution to the Bloch equations, particularly for inhomoge-
neous broadened problems similar to the free induction decay and photon echo,
is the free progression with no applied field (R0 = 0, i.e. c = 0). In the limit
a = 0, the solution of the Bloch equations can also be given by Eqs. (50–52) with
c = 0, where the third component W becomes a constant of the motion. These
steps comprise the analytic approach to solve the system of coupled differential
equations.

Consider now the case where ϕ(t) is not constant. For simplicity, we can
rewrite the system (19) with the following notations,

U = Ūeat , V = V̄ eat , W = W̄e2at (54)

and we shall take trial solutions of the form

Ū = X1(t)V̄ (55)

W̄ = X2(t)V̄ (56)

then we get the following three equations for the component V̄ :

˙̄V =
(

b − Ẋ1

X1

)
V̄ (57)

˙̄V = (−bX1 + ceatX2
)
V̄ (58)



Transient Optical Regime of Two Level Atom in Laser Light 929

˙̄V = −
(

ce−at + Ẋ2

X2

)
V̄ (59)

As above, these three equations must be identical since they govern the same com-
ponent V̄ . By identifying these equations we get for X1 and X2 three differential
equations

b − Ẋ1

X1
= −bX1 + ceatX2 (60)

−ce−at + Ẋ2

X2
= −bX1 + ceatX2 (61)

b − Ẋ1

X1
= −ce−at + Ẋ2

X2
(62)

In the last equation we assume the ansatz

Ẋ1

X1
− Ẋ2

X2
= α (63)

then

X1

X2
= eαt (64)

where α is a constant to be determined. With this new assumption the solutions of
the Eq. (56) become

X1 = 1

α

[
b + ce(α−a)t

]
(65)

X2 = eαt

α

[
b + ce(α−a)t

]
(66)

Substituting these solutions in the Eqs. (54) and (55) we find

[cα(α − a) − 2b2c + c3]e(α−a)t + cb2e−(α−a)t − bc2e2(α−a)t = bα2 + b3 − 2bc2

(67)

To solve this equation we can choose α = a, which implies the following condition
on the parameters a, b, and c

a = (c + b)

√
c − b

b
(68)

Finally we can state that the system (19) can completely be separated without
increasing its order of differentiation and solved if and only if the parameters a,
b and c satisfy the condition (68). Indeed, with this condition the homogenous
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solutions of the system (19) are

U = U0e
at e( ab

b+c
)t (69)

V = V0e
at e( ab

b+c
)t (70)

W = W0e
at e( ab

b+c
)t (71)

with U0 = W0 = ( b+c
a

)V0 and U0, V0,W0 are the initial values of the Bloch vector
components. Equations (69)–(71) are the desired solutions. They are exact solu-
tions in the context of the conditions (68). The three coupled Bloch equations are
also applicable to the three level atom interacting with cavity single mode field. A
similar set of equations have also been derived in Garraway and Kinght (1996)
for multi-mode field using the pseudo mode and coupling factorization where
approximate solutions were obtained for the system of equations, in contrast the
method suggested here gives exact analytic solutions under the same conditions.
Since we know the Bloch vector components will be real, we choose the parameter
a in terms of the others b and c from the condition (68)to be real, then the quantity
should be positive ( c−b

b
) > 0,which is satisfied only for the red detuning.

4. MOVING ATOM IN LASER PLANE WAVE

To illustrate the efficiency of the above approach, we shall consider here
an atom moving with a velocity v0 along the axis of a monochromatic wave
with vector k. Treating its center-of-mass classically, then the amplitude and the
polarization of the electric field do not depend on r. The Rabi frequency does not
depend on time

R0(r = v0t) = R0 = constant (72)

On the other hand, the phase φ varies linearly with r

φ = −k.r (73)

so that

φ̇ = −dr
dt

.∇φ = v0.∇φ = −k.v0 (74)

Since R0 and φ̇ are time independent, the optical Bloch equations are still a system
of coupled linear differential equations with time independent coefficients. They
thus have a general solutions which are derived from the solutions obtained in the
precedent sections by the substitution

δ → δ + φ̇ = δ − k.v0 (75)

or equivalently, since δ = ω − ω0 by the substitution

ω → ω − k.v0 (76)
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Fig. 2. The mean dissipative force in terms of �0t with different values of
detuning δ0 for the velocity of atom v0 = 5.22�0/k. The initial conditions and
parameters are given in the text.

such a result means that the atom moving with velocity v0 sees the laser frequency
shifted by the Doppler −k.v0.

The mean dissipative force experienced by the atom is evaluated numerically
for the sodium atom (Al-Awfi and Babiker, 1996a,b) with the related parameters
(�0 = 6.13X106s−1, k = 10.67X106m−1,R0 = 8.56X109s−1) and the results are
displayed in Figs. 2, 3, 4 and 5. Figure 2 exhibits the dynamics of the dissipative
force in the case of no decay (� = 0) and with the initial conditions U0 = V0 = 0
and W0 = 1, for different values of detuning δ0 with the velocity of the atom
v0 = 5.22�0/k. the dynamics depicts a regular oscillatory behavior and decreases
whereas the detuning increases. We note that the transient regime becomes appar-
ently permanent, while in this limit of no decay, the dissipative force is equal zero
in the steady state. In Fig. 3. we present the variations of the dissipative force in
terms of the velocity v0 of the atom at fixed time (�0t = 0.5) for different values
of detuning δ0. The oscillatory behavior is also pronounced in the transient regime
and the force exhibits declination when the detuning increases. We note that at this
time for large values of velocity, the force starts to collapse. Figure 4. represents
Fdissip in terms of the detuning δ at different times �0t . they show the decrease
oscillatory behavior as δ increases in the red and blue detuning regions. Figure 5.
shows the dissipative force as functions of time for different values of the detuning
in the red detuning region which is the condition imposed by the equation (68).
The behavior represents the decay to the stationary regime which is the steady
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Fig. 3. The mean dissipative force in terms of kv0/�0 with different values of
detuning δ0 for �0t = 0.5. The initial conditions and parameters are given in the text.

state about a short time. The numerical calculation are done in this case with the
initial condition V (t = 0) = 0. In contrast to the dissipative force, the reactive
component Freact is equal to zero in the case of running laser wave, since such a
wave does not exhibit a Rabi frequency gradient ∇R0 = 0.

Fig. 4. The mean dissipative force as function of δ/R0 with different values of
�0t . The initial conditions and parameters are given in the text.



Transient Optical Regime of Two Level Atom in Laser Light 933

Fig. 5. The variation of the mean dissipative force �0t with different values of
detuning δ. See text for parameters and initial conditions.

5. SUMMARY

For an atom at rest or slowly moving, the mean radiative force is usually
split into two parts (Gordon and Ashkin, 1980). The first part is related to the
phase gradient of the laser wave (and to the quadrature part of the atomic dipole).
The second part, is related to the intensity gradient of the laser (and to the in-
phase atomic dipole). The first part, a dissipative force is well understood, and
its various features, such as velocity dependence and momentum diffusion, have
been analyzed in detail in terms of cycles involving absorption of laser photons
and spontaneous emission of fluorescence photons (Wineland and Itano, 1979).
On the other hand, the reactive force heats the atoms for a negative detuning
and cools them for a positive one (Dalibard and Cohen-Tannoudji, 1985). In the
majority of theories of atom-light interaction , the steady state approximation or
other approximation were used to avoid the complexity of the solutions of the
time evolution equations on the Bloch vector B(t) or on the internal density matrix
ρ(t). Recently (Bougouffa and Kamli, 2004; Kamli and Bougouffa, 2005), we
have presented a separation approach based on a Riccati nonlinear differential
equation appropriate for multi-level atoms interacting with single mode quantized
field. In this work we generalized the separation approach of the coupled system.
We derived a set of conditions that permitted the separation of the optical Bloch
equations in the case of a pure radiative decay (Fig. 1). These conditions emerged in
a natural manner from the requirements that the set of equations for the component
V (t) of Bloch vector are identical. The resulting equations are solved exactly
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analytically and relevant quantities such as the dissipative and reactive forces are
determined. The present approach persists with the new conditions of separation
and without assuming the exact resonance, strong collisions or intense external
field conditions (Carter et al., 2005). We emphasize here the fact that with the
natural conditions, it is possible to obtain exact analytic solutions which reproduce
the most important features of the mechanical effect of light on the moving atom.
Although the numerical results reported here are obtained for the sodium atom
and are valid for the initial conditions under consideration. We emphasize that the
method proposed in this paper is valid for any initial conditions and is not restricted
to the particular initial conditions that are considered here. This approach can be
extended to the particular cases of translational and rotational aspects of atomic
motion in laser light where the transient regime plays an important role and gives
rise to new features in the subsequent dynamics.
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